Все Студенту - шпоры, доклады, рефераты, лабораторные, ргр

Студент, решение твоих заданий здесь!

2.3. Определение динамической характеристики измерительного устройства.

Режим работы измерительного устройства, при котором значения выходного и входного сигналов изменяются во времени, называют динамическим (нестационарным или неравновесным).

Практически все измерительные устройства имеют в своем составе инерционные элементы, а именно: подвижные механические узлы, электрические и пневматические емкости, индуктивности, элементы, обладающие тепловой инерцией и т.п. Наличие инерционных элементов определяет инерционность всего измерительного устройства, т.е. приводит к тому, что в динамическом режиме мгновенное значение выходного сигнала измерительного устройства зависит не только от мгновенного значения входного сигнала, но и от любых изменений этого сигнала, т.е. от его первой, второй производных и производных более высокого порядка. Указанные инерционные свойства измерительных устройств определяют динамической характеристикой.

Динамическая характеристика измерительного устройства - это зависимость выходного сигнала от входного в динамическом режиме работы.

(См. также понятие "статической характеристики" на стр.9).

Динамическую характеристику измерительного устройства принято описывать дифференциальным уравнением, передаточной или комплексной частотной функциями.

В подавляющем большинстве случаев динамическая характеристика измерительных устройств в линейной части статической характеристики (для измерительных устройств с линейной статической характеристикой во всем диапазоне преобразований) может быть описана дифференциальным уравнением вида:

an + an-1 + ... + a1 + Y(t) = KX(t) , (2.9)

или соответствующей передаточной функцией:

W(p) = , (2.10)

либо

Y(p) = W(p) × X(p) , (2.11)

где Y(t) и X(t) - выходной и входной сигналы измерительного устройства как функции времени;

n - число, определяющее порядок производной;

Y(p) и X(p) - изображения выходной и входной величин, получаемые с помощью преобразований Лапласа.

Передаточную функцию W(p) можно рассматривать как коэффициент преобразования измерительного устройства в динамическом режиме.

Передаточная функция, как и дифференциальное уравнение, является исчерпывающей характеристикой инерционных свойств измерительного устройства. Она позволяет определять реакцию измерительного устройства на входные сигналы, изменяющиеся во времени по любому закону. Передаточную функцию измерительных устройств удобно использовать при анализе работы последних в автоматических системах регулирования. Ее определяют обычно через переходную или временную характеристику, которая определяется как изменение во времени выходного сигнала Y(t) измерительного устройства при подаче на его вход скачкообразного сигнала, равного по значению единице входной величины. Если высота скачкообразного входного сигнала не равна единице, а имеет некоторое значение XА, то по переходной характеристике можно определить выходной сигнал, используя выражение:

Y(t) = h(t) × XА . (2.12)

Для определения инерционных свойств измерительных устройств по переходным характеристикам обычно используют заимствованное из теории автоматического регулирования понятие динамического звена. Переходные характеристики и передаточные функции типовых динамических звеньев известны, что позволяет по форме переходной характеристики измерительного устройства отождествить его с каким-либо типовым динамическим звеном, а следовательно, определить форму передаточной функции испытываемого измерительного устройства. На рис.2.5 показаны наиболее типичные для измерительных устройств формы переходных характеристик, т.е. кривые переходных процессов или кривые разгона.

Для их получения в нулевой момент времени входной сигнал измерительного устройства скачком изменяется на XА от некоторого значения X1 до X2 (рис.2.5 а). По окончании переходного процесса выходной сигнал измерительного устройства изменяется на YА от значения Y1 до Y2. Для определения коэффициента преобразования К измерительного устройства достаточно вычислить отношение YА/XА.

Переходные процессы, показанные на рис.2.5 б,в,г , соответствуют типовым безынерционному (усилительному), инерционному (апериодическому) первого порядка и колебательному звеньям. Процесс, представленный на рис.2.5 б, характерен для электронных измерительных устройств, а процессы, представленные на рис.2.5 в,г - для большого числа измерительных устройств. Кривая на рис.2.5в представляет собой экспоненту, а величина Т (подкасательная) называется постоянной времени. Она определяет собой время, за которое выходной сигнал достиг бы нового установившегося значения, если бы изменялся с постоянной скоростью, равной скорости в момент скачкообразного изменения входного сигнала. Постоянная времени используется для характеристики динамических свойств измерительных устройств.

Проведение касательной к кривой переходного процесса сопряжено с погрешностями, поэтому значение постоянной времени определяют как интервал времени, за который выходной сигнал изменяется на 0,632 от своего приращения YА (рис.2.5 в). Корректность такого определения доказывается математически.

Колебательное динамическое звено, а следовательно и измерительное устройство, в котором имеет место переходный процесс (рис.2.5 г), можно рассматривать как соединение двух инерционных звеньев с постоянными времени Т1 и Т2. При этом в зависимости от соотношения Т1 и Т2 переходный процесс будет различен. Если (Т12)<2 , то он имеет форму кривых 1 и 2, а при (Т12)³2 - форму кривой 3 (рис.2.5 г).

Переходные процессы, показанные на рис. 2.5 д,е, характерны для случаев, когда дифференциальное уравнение, описывающее динамику измерительного устройства, имеет порядок более, чем второй. В этих случаях принято рассматривать измерительные устройства как совокупность нескольких соединенных последовательно типовых динамических звеньев. Например, измерительное устройство с переходным процессом, показанным на рис.2.5 д, можно рассматривать как соединение звена чистого запаздывания со временем запаздывания tз и инерционного звена с постоянной времени Т ( для графического определения значений tз и Т достаточно провести касательную в точке перегиба А на рис.2.5 д). Измерительное устройство с переходным процессом, показанным на рис.2.5 е, можно рассматривать как соединение звена чистого запаздывания и колебательного звена.

Для всех измерительных устройств важным является время установления выходного сигнала Тп (рис.2.5), которое также называют временем реакции. Оно представляет собой отрезок времени, необходимый для завершения переходного процесса при скачкообразном изменении входного сигнала.

Так как в основном все рассмотренные переходные процессы (рис.2.5) теоретически заканчиваются при бесконечном значении времени, то за время реакции Тп обычно принимают время, за которое выходной сигнал измерительного устройства, приближаясь к новому установившемуся значению, входит в некоторую зону, отличающуюся от этого значения на ± 5% от изменения выходного сигнала, соответствующего данному скачкообразному входному сигналу.

Значение времени реакции может быть приближенно определено через постоянную времени измерительного устройства из соотношения:

Тп = (3 -5) ×Т . (2.13)

Дифференциальные уравнения и передаточные функции рассмотренных наиболее типичных по инерционным свойствам измерительных устройств приведены в таблице 2.2.

Таблица 2.2

Типичные дифференциальные уравнения и передаточные функции измерительных устройств

Кривая переходного процесса Дифференциальное

уравнение

Передаточная

функция

Рис.1.б Y(t) = KX(t) К
Рис.1.в T + Y(t) = KX(t)
Рис.1.г T22 + T1 + Y(t) = KX(t)
Рис.1.д T + Y(t) = KX(t - tз) e -tзp
Рис.1.е T22 + T1 + Y(t) = =KX(t - tз)

e -tзp

Комментариев: 1..
    05.04.09 16:03 Написал(а) z

полная жопа в етих буквах разбираться

[ Добавить ] комментарий
Поля с пометкой * обязательны для заполнения

*Ваше имя
  Ваш сайт  
  Ваш город
*Ваше сообщение

Код подтверждения
*Код с картинки   @
код на картинке содержит только цифры (0..9) и буквы англ. алфавита (A..Z)