Все Студенту - шпоры, доклады, рефераты, лабораторные, ргр

Студент, решение твоих заданий здесь!

4.3. Частотные критерии устойчивости. Принцип аргумента

Частотные критерии устойчивости позволяют судить об устойчивости замкнутых САУ по виду их частотных характеристик без определения корней характеристического уравнения. Однако при этом необходимо знать, устойчива или нет условно разомкнутая САУ.

Частотные критерии позволяют определить устойчивость замкнутой САУ по экспериментально полученным частотным характеристикам звеньев и всей САУ. Частотные критерии имеют простую геометрическую интерпретацию и наглядность, позволяют сравнительно легко исследовать устойчивость систем высокого порядка.

Принцип аргумента. В основе частотных критериев устойчивости лежит следствие из известного в теории функций комплексного переменного принципа аргумента.

Рис. 4.8. Комплексная плоскость корней

Рассмотрим характеристический полином (левую часть характеристического уравнения) замкнутой САУ

(4.16)

с положительными коэффициентами (необходимое условие устойчивости). Этот полином, в соответствии с теоремой Безу, представим в виде произведения сомножителей

,

где - корни характеристического уравнения .

На комплексной плоскости корней каждый корень геометрически может быть изображен вектором, проведенным из начала координат к точке (рис. 4.8, а). Длина этого вектора равна модулю комплексного числа, а угол, образованный вектором с положительным направлением действительной оси, равен аргументу или фазе комплексного числа.

Величины геометрически изображаются векторами, проведенными из точки к произвольной точке (рис. 4.8, б). В частном случае при получим вектор

. (4.17)

Концы элементарных векторов будут находиться на мнимой оси в точке (рис. 4.8, в).

Модуль вектора равен произведению модулей элементарных векторов и

,

аргумент равен сумме аргументов элементарных векторов

. (4.18)

Условимся считать вращение векторов против часовой стрелки положительным. Тогда при изменении от до каждый элементарный вектор повернется на угол , если корень , расположен слева от мнимой оси, и на угол -, если корень расположен справа от мнимой оси (рис. 4.9).

Рис. 4.9. Определение знака аргумента характеристического полинома

Предположим, что полином имеет правых корней и левых корней. Тогда при изменении от до приращение аргумента вектора , равное сумме углов поворота векторов , равно

. (4.19)

Очевидно, что при изменении частоты от 0 до изменение аргумента вектора будет вдвое меньше

. (4.20)

В основу всех частотных критериев устойчивости положено условие (4.20).

Комментариев нет..
[ Добавить ] комментарий
Поля с пометкой * обязательны для заполнения

*Ваше имя
  Ваш сайт  
  Ваш город
*Ваше сообщение

Код подтверждения
*Код с картинки   @
код на картинке содержит только цифры (0..9) и буквы англ. алфавита (A..Z)